\[ y'(x)=\frac {-2 x^2 y(x)-2 x^2 y(x) \log (x)+x^4+x^4 \log (x)+y(x)^2+y(x)^2 \log (x)+2 e^x x-2 x-\log (x)-1}{e^x-1} \] ✓ Mathematica : cpu = 1.81287 (sec), leaf count = 88
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[6]}\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right ) (\log (K[6])+1)}{-1+e^{K[6]}}dK[6]+c_1}+x^2+1\right \}\right \}\] ✓ Maple : cpu = 8.244 (sec), leaf count = 71
\[ \left \{ y \left ( x \right ) ={ \left ( -{x}^{2} \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1}\,{x}^{2}+ \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1} \right ) \left ( - \left ( {{\rm e}^{\int \!{\frac {\ln \left ( x \right ) +1}{{{\rm e}^{x}}-1}}\,{\rm d}x}} \right ) ^{2}+{\it \_C1} \right ) ^{-1}} \right \} \]