\[ y'(x)=\frac {-x^3+x^3 (-\log (x))-x y(x)^2+x y(x)-e^x y(x)-x y(x)^2 \log (x)}{x \left (x-e^x\right )} \] ✓ Mathematica : cpu = 2.52406 (sec), leaf count = 37
\[\left \{\left \{y(x)\to x \tan \left (\int _1^x\frac {K[1] (\log (K[1])+1)}{e^{K[1]}-K[1]}dK[1]+c_1\right )\right \}\right \}\] ✓ Maple : cpu = 0.24 (sec), leaf count = 35
\[ \left \{ y \left ( x \right ) =\tan \left ( \int \!{\frac {x\ln \left ( x \right ) }{{{\rm e}^{x}}-x}}\,{\rm d}x+\int \!{\frac {x}{{{\rm e}^{x}}-x}}\,{\rm d}x+{\it \_C1} \right ) x \right \} \]