\[ y'(x)=\frac {3 x^5 y(x)+3 x^4 y(x)^2+x^3 y(x)^3-3 x^2 y(x)+x^6-2 x^3-x y(x)^2-y(x)-2 x}{x \left (x^2+x y(x)+1\right )} \] ✓ Mathematica : cpu = 0.173121 (sec), leaf count = 80
\[\left \{\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}-\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \},\left \{y(x)\to -\frac {x^2+1}{x}+\frac {1}{x^2 \left (\frac {1}{x}+\frac {1}{x \sqrt {-2 x+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.086 (sec), leaf count = 73
\[ \left \{ y \left ( x \right ) ={\frac {1}{x} \left ( -\sqrt {{\it \_C1}-2\,x}{x}^{2}-{x}^{2}-1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}+1 \right ) ^{-1}},y \left ( x \right ) ={\frac {1}{x} \left ( -\sqrt {{\it \_C1}-2\,x}{x}^{2}+{x}^{2}+1 \right ) \left ( \sqrt {{\it \_C1}-2\,x}-1 \right ) ^{-1}} \right \} \]