2.932   ODE No. 932

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

y(x)=e3x22x(3e3x2y(x)3+e9x22y(x)3+18e3x2y(x)2+9e9x22y(x)2+27e3x2y(x)+27e9x22y(x)+27e9x22+27y(x)3)243y(x) Mathematica : cpu = 4.76193 (sec), leaf count = 4323

Solve[x22+272RootSum[y(x)3#13+9y(x)2#13+27y(x)#13+27#13+3y(x)3#12+18y(x)2#12+27y(x)#12243y(x)3#1729y(x)2#1+27y(x)3&,2log(e3x22#1)3x2y(x)2#12+6y(x)#12+9#12+2y(x)2#1+6y(x)#181y(x)2&]y(x)2+1y(x)(27(RootSum[#13K[1]3+3#12K[1]3243#1K[1]3+27K[1]3+9#13K[1]2+18#12K[1]2729#1K[1]2+27#13K[1]+27#12K[1]+27#13&,2log(e3x22#1)3x2#12K[1]2+2#1K[1]281K[1]2+6#12K[1]+6#1K[1]+9#12&]+RootSum[#13K[1]3+3#12K[1]3243#1K[1]3+27K[1]3+9#13K[1]2+18#12K[1]2729#1K[1]2+27#13K[1]+27#12K[1]+27#13&,9801e3x22x2K[1]4+3321x2K[1]4+123e3x22x2#12K[1]4+531x2#12K[1]482e3x22log(e3x22#1)#12K[1]4354log(e3x22#1)#12K[1]46534e3x22log(e3x22#1)K[1]42214log(e3x22#1)K[1]4162e3x22x2#1K[1]439690x2#1K[1]4+108e3x22log(e3x22#1)#1K[1]4+26460log(e3x22#1)#1K[1]4+58806e3x22x2K[1]3+9963x2K[1]3+1476e3x22x2#12K[1]3+4779x2#12K[1]3984e3x22log(e3x22#1)#12K[1]33186log(e3x22#1)#12K[1]3+531#12K[1]339204e3x22log(e3x22#1)K[1]36642log(e3x22#1)K[1]31458e3x22x2#1K[1]3238140x2#1K[1]3+972e3x22log(e3x22#1)#1K[1]3+158760log(e3x22#1)#1K[1]339690#1K[1]3+3321K[1]3+88209e3x22x2K[1]2+6642e3x22x2#12K[1]2+14337x2#12K[1]24428e3x22log(e3x22#1)#12K[1]29558log(e3x22#1)#12K[1]2+3186#12K[1]258806e3x22log(e3x22#1)K[1]24374e3x22x2#1K[1]2357210x2#1K[1]2+2916e3x22log(e3x22#1)#1K[1]2+238140log(e3x22#1)#1K[1]2119070#1K[1]2+13284e3x22x2#12K[1]+14337x2#12K[1]8856e3x22log(e3x22#1)#12K[1]9558log(e3x22#1)#12K[1]+4779#12K[1]4374e3x22x2#1K[1]+2916e3x22log(e3x22#1)#1K[1]+9963e3x22x2#126642e3x22log(e3x22#1)#1243677e3x22K[1]3+1681e3x22#12K[1]3+7257#12K[1]32214e3x22#1K[1]3364806#1K[1]3+45387K[1]3131031e3x22K[1]2+15129e3x22#12K[1]2+43542#12K[1]213284e3x22#1K[1]21094418#1K[1]2+45387e3x22#12K[1]+65313#12K[1]19926e3x22#1K[1]+45387e3x22#12&]6K[1]3)K[1]243e3x22K[1]243e3x22K[1]3+3e3x2K[1]3+e9x22K[1]3+27K[1]3729e3x22K[1]2+18e3x2K[1]2+9e9x22K[1]2+27e3x2K[1]+27e9x22K[1]+27e9x2281RootSum[#13K[1]3+3#12K[1]3243#1K[1]3+27K[1]3+9#13K[1]2+18#12K[1]2729#1K[1]2+27#13K[1]+27#12K[1]+27#13&,9801e3x22x2K[1]4+3321x2K[1]4+123e3x22x2#12K[1]4+531x2#12K[1]482e3x22log(e3x22#1)#12K[1]4354log(e3x22#1)#12K[1]46534e3x22log(e3x22#1)K[1]42214log(e3x22#1)K[1]4162e3x22x2#1K[1]439690x2#1K[1]4+108e3x22log(e3x22#1)#1K[1]4+26460log(e3x22#1)#1K[1]4+58806e3x22x2K[1]3+9963x2K[1]3+1476e3x22x2#12K[1]3+4779x2#12K[1]3984e3x22log(e3x22#1)#12K[1]33186log(e3x22#1)#12K[1]3+531#12K[1]339204e3x22log(e3x22#1)K[1]36642log(e3x22#1)K[1]31458e3x22x2#1K[1]3238140x2#1K[1]3+972e3x22log(e3x22#1)#1K[1]3+158760log(e3x22#1)#1K[1]339690#1K[1]3+3321K[1]3+88209e3x22x2K[1]2+6642e3x22x2#12K[1]2+14337x2#12K[1]24428e3x22log(e3x22#1)#12K[1]29558log(e3x22#1)#12K[1]2+3186#12K[1]258806e3x22log(e3x22#1)K[1]24374e3x22x2#1K[1]2357210x2#1K[1]2+2916e3x22log(e3x22#1)#1K[1]2+238140log(e3x22#1)#1K[1]2119070#1K[1]2+13284e3x22x2#12K[1]+14337x2#12K[1]8856e3x22log(e3x22#1)#12K[1]9558log(e3x22#1)#12K[1]+4779#12K[1]4374e3x22x2#1K[1]+2916e3x22log(e3x22#1)#1K[1]+9963e3x22x2#126642e3x22log(e3x22#1)#1243677e3x22K[1]3+1681e3x22#12K[1]3+7257#12K[1]32214e3x22#1K[1]3364806#1K[1]3+45387K[1]3131031e3x22K[1]2+15129e3x22#12K[1]2+43542#12K[1]213284e3x22#1K[1]21094418#1K[1]2+45387e3x22#12K[1]+65313#12K[1]19926e3x22#1K[1]+45387e3x22#12&]2(K[1]+3)K[1]3+27RootSum[#13K[1]3+3#12K[1]3243#1K[1]3+27K[1]3+9#13K[1]2+18#12K[1]2729#1K[1]2+27#13K[1]+27#12K[1]+27#13&,9801e3x22x2K[1]4+3321x2K[1]4+123e3x22x2#12K[1]4+531x2#12K[1]482e3x22log(e3x22#1)#12K[1]4354log(e3x22#1)#12K[1]46534e3x22log(e3x22#1)K[1]42214log(e3x22#1)K[1]4162e3x22x2#1K[1]439690x2#1K[1]4+108e3x22log(e3x22#1)#1K[1]4+26460log(e3x22#1)#1K[1]4+58806e3x22x2K[1]3+9963x2K[1]3+1476e3x22x2#12K[1]3+4779x2#12K[1]3984e3x22log(e3x22#1)#12K[1]33186log(e3x22#1)#12K[1]3+531#12K[1]339204e3x22log(e3x22#1)K[1]36642log(e3x22#1)K[1]31458e3x22x2#1K[1]3238140x2#1K[1]3+972e3x22log(e3x22#1)#1K[1]3+158760log(e3x22#1)#1K[1]339690#1K[1]3+3321K[1]3+88209e3x22x2K[1]2+6642e3x22x2#12K[1]2+14337x2#12K[1]24428e3x22log(e3x22#1)#12K[1]29558log(e3x22#1)#12K[1]2+3186#12K[1]258806e3x22log(e3x22#1)K[1]24374e3x22x2#1K[1]2357210x2#1K[1]2+2916e3x22log(e3x22#1)#1K[1]2+238140log(e3x22#1)#1K[1]2119070#1K[1]2+13284e3x22x2#12K[1]+14337x2#12K[1]8856e3x22log(e3x22#1)#12K[1]9558log(e3x22#1)#12K[1]+4779#12K[1]4374e3x22x2#1K[1]+2916e3x22log(e3x22#1)#1K[1]+9963e3x22x2#126642e3x22log(e3x22#1)#1243677e3x22K[1]3+1681e3x22#12K[1]3+7257#12K[1]32214e3x22#1K[1]3364806#1K[1]3+45387K[1]3131031e3x22K[1]2+15129e3x22#12K[1]2+43542#12K[1]213284e3x22#1K[1]21094418#1K[1]2+45387e3x22#12K[1]+65313#12K[1]19926e3x22#1K[1]+45387e3x22#12&]2K[1]3)dK[1]=c1,y(x)] Maple : cpu = 0.266 (sec), leaf count = 54

{y(x)=369e3/2x2123123e3/2x2+136RootOf(41x250243409_Z(9248_a31860867_a+1860867)1d_a+27_C1)}