\[ a x+y(x)^2 y''(x)+y(x) y'(x)^2=0 \] ✗ Mathematica : cpu = 22.351 (sec), leaf count = 0
DSolve[a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0,y[x],x]
, could not solve
DSolve[a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0, y[x], x]
✓ Maple : cpu = 1.525 (sec), leaf count = 117
dsolve(y(x)^2*diff(diff(y(x),x),x)+y(x)*diff(y(x),x)^2+a*x=0,y(x))
\[\ln \left (x \right )-\frac {\sqrt {3}\, \left (\int _{}^{\frac {y \left (x \right )}{x}}\frac {3 \textit {\_g}^{2} \left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {1}{3}} \tan \left (\RootOf \left (-2 \textit {\_Z} \sqrt {3}+\ln \left (\frac {\tan ^{2}\left (\textit {\_Z} \right )+1}{\tan ^{2}\left (\textit {\_Z} \right )+2 \sqrt {3}\, \tan \left (\textit {\_Z} \right )+3}\right )+6 c_{1}+6 \left (\int \frac {\left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {2}{3}} \textit {\_g}^{2}}{\textit {\_g}^{3}+a}d \textit {\_g} \right )\right )\right )+\textit {\_g}^{2} \sqrt {3}\, \left (\left (\frac {a}{\textit {\_g}^{3}}\right )^{\frac {1}{3}}-2\right )}{\textit {\_g}^{3}+a}d \textit {\_g} \right )}{6}-c_{2} = 0\]