ODE No. 1780

\[ -a x-b+y(x)^2 y''(x)+y(x) y'(x)^2=0 \] Mathematica : cpu = 20.3118 (sec), leaf count = 0

DSolve[-b - a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0,y[x],x]
 

, could not solve

DSolve[-b - a*x + y[x]*Derivative[1][y][x]^2 + y[x]^2*Derivative[2][y][x] == 0, y[x], x]

Maple : cpu = 1.566 (sec), leaf count = 161

dsolve(y(x)^2*diff(diff(y(x),x),x)+y(x)*diff(y(x),x)^2-a*x-b=0,y(x))
 

\[\frac {b \ln \left (a x +b \right )}{a}+\frac {\sqrt {3}\, \left (\int _{}^{\frac {y \left (x \right )}{a x +b}}\frac {-3 b^{2} \textit {\_g}^{2} \left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{\frac {1}{3}} \tan \left (\RootOf \left (6 b^{2} \left (\int \frac {\left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{\frac {2}{3}} \textit {\_g}^{2}}{\textit {\_g}^{3} a^{2}-1}d \textit {\_g} \right )-2 \textit {\_Z} \sqrt {3}+\ln \left (\frac {\tan ^{2}\left (\textit {\_Z} \right )+1}{\tan ^{2}\left (\textit {\_Z} \right )+2 \sqrt {3}\, \tan \left (\textit {\_Z} \right )+3}\right )+6 c_{1}\right )\right )+2 b \left (-\frac {b \left (-\frac {a}{\textit {\_g}^{3} b^{3}}\right )^{\frac {1}{3}}}{2}+a \right ) \textit {\_g}^{2} \sqrt {3}}{\textit {\_g}^{3} a^{2}-1}d \textit {\_g} \right )}{6}-c_{2} = 0\]