\[ x^2+\left (y(x)^2-x\right ) y'(x)-y(x)=0 \] ✓ Mathematica : cpu = 0.148463 (sec), leaf count = 327
DSolve[x^2 - y[x] + (-x + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to -\frac {3 \sqrt [3]{2} x}{\sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}-\frac {\sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}{3 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {3 \left (1+i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}{6 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {3 \left (1-i \sqrt {3}\right ) x}{2^{2/3} \sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{27 x^3+\sqrt {-2916 x^3+\left (27 x^3+81 c_1\right ){}^2}+81 c_1}}{6 \sqrt [3]{2}}\right \}\right \}\] ✓ Maple : cpu = 0.027 (sec), leaf count = 319
dsolve((y(x)^2-x)*diff(y(x),x)-y(x)+x^2 = 0,y(x))
\[y \left (x \right ) = \frac {\left (-4 x^{3}-12 c_{1}+4 \sqrt {x^{6}+\left (6 c_{1}-4\right ) x^{3}+9 c_{1}^{2}}\right )^{\frac {2}{3}}+4 x}{2 \left (-4 x^{3}-12 c_{1}+4 \sqrt {x^{6}+\left (6 c_{1}-4\right ) x^{3}+9 c_{1}^{2}}\right )^{\frac {1}{3}}}\]