ODE No. 271

\[ \left (x^2+y(x)^2\right ) y'(x)+2 x (y(x)+2 x)=0 \] Mathematica : cpu = 0.269527 (sec), leaf count = 370

DSolve[2*x*(2*x + y[x]) + (x^2 + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{\sqrt [3]{2}}-\frac {\sqrt [3]{2} x^2}{\sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}\right \},\left \{y(x)\to \frac {\left (1+i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}\right \},\left \{y(x)\to \frac {\left (1-i \sqrt {3}\right ) x^2}{2^{2/3} \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-4 x^3+\sqrt {20 x^6-8 e^{3 c_1} x^3+e^{6 c_1}}+e^{3 c_1}}}{2 \sqrt [3]{2}}\right \}\right \}\] Maple : cpu = 0.184 (sec), leaf count = 352

dsolve((y(x)^2+x^2)*diff(y(x),x)+2*x*(y(x)+2*x) = 0,y(x))
 

\[y \left (x \right ) = \frac {\frac {\left (4-16 x^{3} c_{1}^{\frac {3}{2}}+4 \sqrt {20 c_{1}^{3} x^{6}-8 x^{3} c_{1}^{\frac {3}{2}}+1}\right )^{\frac {1}{3}}}{2}-\frac {2 c_{1} x^{2}}{\left (4-16 x^{3} c_{1}^{\frac {3}{2}}+4 \sqrt {20 c_{1}^{3} x^{6}-8 x^{3} c_{1}^{\frac {3}{2}}+1}\right )^{\frac {1}{3}}}}{\sqrt {c_{1}}}\]