ODE No. 278

\[ y'(x) \left (y(x)^2+4 \sin (x)\right )-\cos (x)=0 \] Mathematica : cpu = 0.222127 (sec), leaf count = 39

DSolve[-Cos[x] + (4*Sin[x] + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [-\frac {1}{32} e^{-4 y(x)} \left (8 y(x)^2+4 y(x)+1\right )-e^{-4 y(x)} \sin (x)=c_1,y(x)\right ]\] Maple : cpu = 0.065 (sec), leaf count = 28

dsolve((y(x)^2+4*sin(x))*diff(y(x),x)-cos(x) = 0,y(x))
 

\[\frac {\left (-8 y \left (x \right )^{2}-4 y \left (x \right )-32 \sin \left (x \right )-1\right ) {\mathrm e}^{-4 y \left (x \right )}}{32}+c_{1} = 0\]