\[ \left (y(x)^2+2 y(x)+x\right ) y'(x)+y(x)^2 (y(x)+x)^2+y(x) (y(x)+1)=0 \] ✓ Mathematica : cpu = 0.541299 (sec), leaf count = 107
DSolve[y[x]*(1 + y[x]) + y[x]^2*(x + y[x])^2 + (x + 2*y[x] + y[x]^2)*Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to \frac {-x^2-\sqrt {\left (x^2-c_1 x-1\right ){}^2+4 (x-c_1)}+c_1 x+1}{2 (x-c_1)}\right \},\left \{y(x)\to \frac {-x^2+\sqrt {\left (x^2-c_1 x-1\right ){}^2+4 (x-c_1)}+c_1 x+1}{2 (x-c_1)}\right \}\right \}\] ✓ Maple : cpu = 0.176 (sec), leaf count = 116
dsolve((y(x)^2+2*y(x)+x)*diff(y(x),x)+(y(x)+x)^2*y(x)^2+y(x)*(1+y(x)) = 0,y(x))
\[y \left (x \right ) = \frac {2 x^{2}-c_{1} x +\sqrt {4 x^{4}-4 x^{3} c_{1}+\left (c_{1}^{2}-8\right ) x^{2}+\left (4 c_{1}+16\right ) x -8 c_{1}+4}-2}{2 c_{1}-4 x}\]