ODE No. 45

\[ 2 y(x)^3 \left (a^2 x^3-b^2 x\right )+3 b y(x)^2+y'(x)=0 \] Mathematica : cpu = 0.607111 (sec), leaf count = 133

DSolve[3*b*y[x]^2 + 2*(-(b^2*x) + a^2*x^3)*y[x]^3 + Derivative[1][y][x] == 0,y[x],x]
 

\[\text {Solve}\left [c_1=\sqrt [4]{\left (\frac {b}{a x}-\frac {1}{a x^2 y(x)}\right )^2-1} \left (-\frac {\left (\frac {b}{a x}-\frac {1}{a x^2 y(x)}\right ) \, _2F_1\left (\frac {1}{2},\frac {3}{4};\frac {3}{2};\left (\frac {b}{a x}-\frac {1}{a x^2 y(x)}\right )^2\right )}{2 \sqrt [4]{1-\left (\frac {b}{a x}-\frac {1}{a x^2 y(x)}\right )^2}}-\frac {a x}{b}\right ),y(x)\right ]\] Maple : cpu = 0.15 (sec), leaf count = 123

dsolve(diff(y(x),x)+2*(a^2*x^3-b^2*x)*y(x)^3+3*b*y(x)^2 = 0,y(x))
 

\[c_{1}+\frac {\left (\left (\frac {a x}{b}+\frac {1}{\frac {b^{2} y \left (x \right )}{a}-\frac {b}{a x}}\right )^{2}-1\right )^{\frac {1}{4}}}{\left (\frac {b^{2} y \left (x \right )}{a}-\frac {b}{a x}\right ) \sqrt {\frac {a x}{b}+\frac {1}{\frac {b^{2} y \left (x \right )}{a}-\frac {b}{a x}}}}-\left (\int _{}^{\frac {a \,x^{2} y \left (x \right )}{b x y \left (x \right )-1}}\frac {\left (\textit {\_a}^{2}-1\right )^{\frac {1}{4}}}{\sqrt {\textit {\_a}}}d \textit {\_a} \right ) = 0\]