\[ -x^{-a} y(x)+a x^{-a-1}-x^{-2 a}-x^a y(x)^3+y'(x)+3 y(x)^2=0 \] ✓ Mathematica : cpu = 0.290997 (sec), leaf count = 228
DSolve[a*x^(-1 - a) - x^(-2*a) - y[x]/x^a + 3*y[x]^2 - x^a*y[x]^3 + Derivative[1][y][x] == 0,y[x],x]
\[\left \{\left \{y(x)\to x^{-a}-\frac {e^{-\frac {2 x^{1-a}}{1-a}}}{\sqrt {-\frac {2^{\frac {2 (a+1)}{a-1}+1} x^{a+1} \left (\frac {x^{1-a}}{1-a}\right )^{\frac {a+1}{a-1}} \Gamma \left (\frac {a+1}{1-a},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+c_1}}\right \},\left \{y(x)\to x^{-a}+\frac {e^{-\frac {2 x^{1-a}}{1-a}}}{\sqrt {-\frac {2^{\frac {2 (a+1)}{a-1}+1} x^{a+1} \left (\frac {x^{1-a}}{1-a}\right )^{\frac {a+1}{a-1}} \Gamma \left (\frac {a+1}{1-a},-\frac {4 x^{1-a}}{a-1}\right )}{a-1}+c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.103 (sec), leaf count = 956
dsolve(diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0,y(x))
\[y \left (x \right ) = -\frac {{\mathrm e}^{\frac {2 x \,x^{-a}}{a -1}}}{\sqrt {c_{1}-\frac {2 \,2^{-\frac {2 a}{1-a}-\frac {2}{1-a}} \left (\frac {1}{1-a}\right )^{\frac {a +1}{a -1}} \left (-\frac {2^{-3+\frac {2 a}{1-a}+\frac {2}{1-a}+\frac {2}{a -1}} \left (a -1\right ) x^{-\frac {a^{2}}{1-a}+\frac {1}{1-a}-1+a} \left (\frac {1}{1-a}\right )^{-\frac {a +1}{a -1}} \left (-\frac {4 x^{1-a} a^{2}}{1-a}+\frac {8 a \,x^{1-a}}{1-a}-\frac {4 x^{1-a}}{1-a}+2 a -2\right ) \left (1-a \right ) \left (\frac {x^{1-a}}{1-a}\right )^{\frac {1}{a -1}} {\mathrm e}^{\frac {2 x^{1-a}}{a -1}} \WhittakerM \left (-\frac {a}{a -1}, -\frac {1}{a -1}+\frac {1}{2}, -\frac {4 x^{1-a}}{a -1}\right )}{\left (a +1\right ) \left (-3+a \right )}+\frac {2^{-1+\frac {2 a}{1-a}+\frac {2}{1-a}+\frac {2}{a -1}} \left (a -1\right ) x^{-\frac {a^{2}}{1-a}+\frac {1}{1-a}-1+a} \left (\frac {1}{1-a}\right )^{-\frac {a +1}{a -1}} \left (1-a \right ) \left (\frac {x^{1-a}}{1-a}\right )^{\frac {1}{a -1}} {\mathrm e}^{\frac {2 x^{1-a}}{a -1}} \WhittakerM \left (-\frac {1}{a -1}, -\frac {1}{a -1}+\frac {1}{2}, -\frac {4 x^{1-a}}{a -1}\right )}{\left (a +1\right ) \left (-3+a \right )}\right )}{1-a}}}+x^{-a}\]