\[ y'(x)=\frac {2 y(x)+1}{x \left (2 x y(x)^2+x y(x)-2\right )} \] ✓ Mathematica : cpu = 0.395344 (sec), leaf count = 39
DSolve[Derivative[1][y][x] == (1 + 2*y[x])/(x*(-2 + x*y[x] + 2*x*y[x]^2)),y[x],x]
\[\text {Solve}\left [\frac {1}{8} (-2 y(x)+\log (4 y(x)+2)-1)-\frac {1}{2 x (2 y(x)+1)}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.266 (sec), leaf count = 35
dsolve(diff(y(x),x) = 1/x*(1+2*y(x))/(-2+x*y(x)+2*x*y(x)^2),y(x))
\[y \left (x \right ) = \frac {{\mathrm e}^{\RootOf \left (x \,{\mathrm e}^{2 \textit {\_Z}}+2 x c_{1} {\mathrm e}^{\textit {\_Z}}-\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}} x -{\mathrm e}^{\textit {\_Z}} x +4\right )}}{2}-\frac {1}{2}\]