\[ y'(x)=\frac {x^4-2 x^2 y(x)^2+y(x)^4+x}{y(x)} \] ✓ Mathematica : cpu = 0.117538 (sec), leaf count = 74
DSolve[Derivative[1][y][x] == (x + x^4 - 2*x^2*y[x]^2 + y[x]^4)/y[x],y[x],x]
\[\left \{\left \{y(x)\to -\frac {\sqrt {2 x^3+2 c_1 x^2-1}}{\sqrt {2} \sqrt {x+c_1}}\right \},\left \{y(x)\to \frac {\sqrt {2 x^3+2 c_1 x^2-1}}{\sqrt {2} \sqrt {x+c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.106 (sec), leaf count = 72
dsolve(diff(y(x),x) = (x+y(x)^4-2*x^2*y(x)^2+x^4)/y(x),y(x))
\[y \left (x \right ) = -\frac {\sqrt {2}\, \sqrt {\left (c_{1}+x \right ) \left (2 x^{3}+2 x^{2} c_{1}-1\right )}}{2 c_{1}+2 x}\]