ODE No. 788

y(x)=y(x)(x2y(x)(coth(x+1))+log(x1)+xcoth(x+1))xlog(x1) Mathematica : cpu = 24.1334 (sec), leaf count = 348

DSolve[Derivative[1][y][x] == -((y[x]*(x*Coth[1 + x] + Log[-1 + x] - x^2*Coth[1 + x]*y[x]))/(x*Log[-1 + x])),y[x],x]
 

{{y(x)exp(1xe2cosh(K[1])K[1]cosh(K[1])K[1]e2sinh(K[1])K[1]+sinh(K[1])K[1]e2cosh(K[1])log(K[1]1)+cosh(K[1])log(K[1]1)e2log(K[1]1)sinh(K[1])log(K[1]1)sinh(K[1])K[1]log(K[1]1)(e2cosh(K[1])cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])1xexp(1K[2]e2cosh(K[1])K[1]cosh(K[1])K[1]e2sinh(K[1])K[1]+sinh(K[1])K[1]e2cosh(K[1])log(K[1]1)+cosh(K[1])log(K[1]1)e2log(K[1]1)sinh(K[1])log(K[1]1)sinh(K[1])K[1]log(K[1]1)(e2cosh(K[1])cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])(e2cosh(K[2])K[2]2+cosh(K[2])K[2]2+e2sinh(K[2])K[2]2sinh(K[2])K[2]2)K[2]log(K[2]1)(e2cosh(K[2])cosh(K[2])+e2sinh(K[2])+sinh(K[2]))dK[2]+c1}} Maple : cpu = 0.355 (sec), leaf count = 108

dsolve(diff(y(x),x) = -y(x)*(ln(x-1)+coth(1+x)*x-coth(1+x)*x^2*y(x))/x/ln(x-1),y(x))
 

y(x)=eln(x1)sinh(1+x)+xcosh(1+x)xln(x1)sinh(1+x)dxc1+excosh(1+x)ln(x1)sinh(1+x)sinh(1+x)ln(x1)xdxxcosh(1+x)ln(x1)sinh(1+x)dx