[next] [prev] [prev-tail] [tail] [up]
y′(x)=−y(x)(x2y(x)(−coth(x+1))+log(x−1)+xcoth(x+1))xlog(x−1) ✓ Mathematica : cpu = 24.1334 (sec), leaf count = 348
DSolve[Derivative[1][y][x] == -((y[x]*(x*Coth[1 + x] + Log[-1 + x] - x^2*Coth[1 + x]*y[x]))/(x*Log[-1 + x])),y[x],x]
{{y(x)→exp(∫1x−e2cosh(K[1])K[1]−cosh(K[1])K[1]−e2sinh(K[1])K[1]+sinh(K[1])K[1]−e2cosh(K[1])log(K[1]−1)+cosh(K[1])log(K[1]−1)−e2log(K[1]−1)sinh(K[1])−log(K[1]−1)sinh(K[1])K[1]log(K[1]−1)(e2cosh(K[1])−cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])−∫1xexp(∫1K[2]−e2cosh(K[1])K[1]−cosh(K[1])K[1]−e2sinh(K[1])K[1]+sinh(K[1])K[1]−e2cosh(K[1])log(K[1]−1)+cosh(K[1])log(K[1]−1)−e2log(K[1]−1)sinh(K[1])−log(K[1]−1)sinh(K[1])K[1]log(K[1]−1)(e2cosh(K[1])−cosh(K[1])+e2sinh(K[1])+sinh(K[1]))dK[1])(e2cosh(K[2])K[2]2+cosh(K[2])K[2]2+e2sinh(K[2])K[2]2−sinh(K[2])K[2]2)K[2]log(K[2]−1)(e2cosh(K[2])−cosh(K[2])+e2sinh(K[2])+sinh(K[2]))dK[2]+c1}} ✓ Maple : cpu = 0.355 (sec), leaf count = 108
dsolve(diff(y(x),x) = -y(x)*(ln(x-1)+coth(1+x)*x-coth(1+x)*x^2*y(x))/x/ln(x-1),y(x))
y(x)=e∫−ln(x−1)sinh(1+x)+xcosh(1+x)xln(x−1)sinh(1+x)dxc1+∫−e∫−xcosh(1+x)−ln(x−1)sinh(1+x)sinh(1+x)ln(x−1)xdxxcosh(1+x)ln(x−1)sinh(1+x)dx
[next] [prev] [prev-tail] [front] [up]