ODE No. 789

y(x)=x2coth(x+1)+2xy(x)coth(x+1)+y(x)2coth(x+1)log(x1)+coth(x+1)log(x1) Mathematica : cpu = 57.3856 (sec), leaf count = 120

DSolve[Derivative[1][y][x] == (Coth[1 + x] + x^2*Coth[1 + x] - Log[-1 + x] + 2*x*Coth[1 + x]*y[x] + Coth[1 + x]*y[x]^2)/Log[-1 + x],y[x],x]
 

{{y(x)e2xsinh(x)xsinh(x)+e2xcosh(x)+xcosh(x)e2sinh(x)sinh(x)+e2cosh(x)+cosh(x)+tan(1xe2cosh(K[5])+cosh(K[5])+e2sinh(K[5])sinh(K[5])log(K[5]1)(e2cosh(K[5])cosh(K[5])+e2sinh(K[5])+sinh(K[5]))dK[5]+c1)}} Maple : cpu = 0. (sec), leaf count = 0

dsolve(diff(y(x),x) = -(ln(x-1)-coth(1+x)*x^2-2*coth(1+x)*x*y(x)-coth(1+x)-coth(1+x)*y(x)^2)/ln(x-1),y(x))
 

, could not solve

dsolve(diff(y(x),x) = -(ln(x-1)-coth(1+x)*x^2-2*coth(1+x)*x*y(x)-coth(1+x)-coth(1+x)*y(x)^2)/ln(x-1),y(x))