ODE No. 916

\[ y'(x)=\frac {y(x) \left (x^4 \log ^2(y(x))+2 x^4 \log (x) \log (y(x))+x^4 \log ^2(x)+x \log (y(x))+\log (y(x))-x+x \log (x)+\log (x)-1\right )}{x (x+1)} \] Mathematica : cpu = 0.204728 (sec), leaf count = 43

DSolve[Derivative[1][y][x] == ((-1 - x + Log[x] + x*Log[x] + x^4*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x^4*Log[x]*Log[y[x]] + x^4*Log[y[x]]^2)*y[x])/(x*(1 + x)),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {\exp \left (\frac {12 x}{-3 x^4+4 x^3-6 x^2+12 x-12 \log (x+1)+c_1}\right )}{x}\right \}\right \}\] Maple : cpu = 0.389 (sec), leaf count = 73

dsolve(diff(y(x),x) = y(x)*(ln(y(x))*x+ln(y(x))-x-1+x*ln(x)+ln(x)+x^4*ln(x)^2+2*x^4*ln(y(x))*ln(x)+x^4*ln(y(x))^2)/x/(1+x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {-12 \ln \left (1+x \right ) \ln \left (x \right )+\left (-3 x^{4}+4 x^{3}-6 x^{2}+12 x +12 c_{1}\right ) \ln \left (x \right )-12 x}{3 x^{4}-4 x^{3}+6 x^{2}+12 \ln \left (1+x \right )-12 c_{1}-12 x}}\]