ODE No. 917

\[ y'(x)=\frac {y(x) \left (x \log ^2(y(x))+2 x \log (x) \log (y(x))+x \log (y(x))+\log (y(x))-x+x \log ^2(x)+x \log (x)+\log (x)-1\right )}{x (x+1)} \] Mathematica : cpu = 0.199566 (sec), leaf count = 28

DSolve[Derivative[1][y][x] == ((-1 - x + Log[x] + x*Log[x] + x*Log[x]^2 + Log[y[x]] + x*Log[y[x]] + 2*x*Log[x]*Log[y[x]] + x*Log[y[x]]^2)*y[x])/(x*(1 + x)),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {e^{-\frac {x}{x-\log (x+1)-c_1}}}{x}\right \}\right \}\] Maple : cpu = 0.202 (sec), leaf count = 38

dsolve(diff(y(x),x) = y(x)*(x*ln(x)+ln(x)+ln(y(x))*x+ln(y(x))-x-1+x*ln(x)^2+2*x*ln(y(x))*ln(x)+x*ln(y(x))^2)/x/(1+x),y(x))
 

\[y \left (x \right ) = {\mathrm e}^{\frac {\ln \left (1+x \right ) \ln \left (x \right )+\left (-x +c_{1}\right ) \ln \left (x \right )-x}{-\ln \left (1+x \right )-c_{1}+x}}\]