ODE No. 926

\[ y'(x)=\frac {\frac {1}{16} x^3 y(x)^3-\frac {1}{2} x^2 y(x)^3-\frac {3}{8} x^2 y(x)^2+x y(x)^3+x y(x)^2+\frac {3}{4} x y(x)-\frac {1}{2}}{x (x y(x)-2 y(x)-2)} \] Mathematica : cpu = 0.193882 (sec), leaf count = 128

DSolve[Derivative[1][y][x] == (-1/2 + (3*x*y[x])/4 + x*y[x]^2 - (3*x^2*y[x]^2)/8 + x*y[x]^3 - (x^2*y[x]^3)/2 + (x^3*y[x]^3)/16)/(x*(-2 - 2*y[x] + x*y[x])),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {2}{x-2}+\frac {1}{16 x (x-2) \left (-\frac {1}{64}-\frac {e^{2 \left (\frac {1}{2} \log (2-x)-\frac {\log (x)}{2}\right )}}{\sqrt {2048 \log (x)+c_1}}\right )}\right \},\left \{y(x)\to \frac {2}{x-2}+\frac {1}{16 x (x-2) \left (-\frac {1}{64}+\frac {e^{2 \left (\frac {1}{2} \log (2-x)-\frac {\log (x)}{2}\right )}}{\sqrt {2048 \log (x)+c_1}}\right )}\right \}\right \}\] Maple : cpu = 0.056 (sec), leaf count = 67

dsolve(diff(y(x),x) = 1/16*(-8*x^2*y(x)^3+16*x*y(x)^2+16*x*y(x)^3-8+12*x*y(x)-6*x^2*y(x)^2+x^3*y(x)^3)/(-2+x*y(x)-2*y(x))/x,y(x))
 

\[y \left (x \right ) = \frac {2 \sqrt {c_{1}+8 \ln \left (x \right )}+8}{x \sqrt {c_{1}+8 \ln \left (x \right )}+4 x -8}\]