\[ y'(x)=-\frac {1}{8} x \left (12 e^{-x^2} x^2 y(x)^2+8 e^{-x^2} x^2 y(x)+8 e^{-x^2} x^2-8 e^{-x^2}+e^{-3 x^2} x^6-6 e^{-2 x^2} x^4 y(x)-2 e^{-2 x^2} x^4-8 y(x)^3-8 y(x)^2-8\right ) \] ✓ Mathematica : cpu = 0.589588 (sec), leaf count = 112
DSolve[Derivative[1][y][x] == -1/8*(x*(-8 - 8/E^x^2 + (8*x^2)/E^x^2 - (2*x^4)/E^(2*x^2) + x^6/E^(3*x^2) + (8*x^2*y[x])/E^x^2 - (6*x^4*y[x])/E^(2*x^2) - 8*y[x]^2 + (12*x^2*y[x]^2)/E^x^2 - 8*y[x]^3)),y[x],x]
\[\text {Solve}\left [-\frac {29}{3} \text {RootSum}\left [-29 \text {$\#$1}^3+3 \sqrt [3]{29} \text {$\#$1}-29\& ,\frac {\log \left (\frac {\frac {1}{2} e^{-x^2} x \left (2 e^{x^2}-3 x^2\right )+3 x y(x)}{\sqrt [3]{29} \sqrt [3]{x^3}}-\text {$\#$1}\right )}{\sqrt [3]{29}-29 \text {$\#$1}^2}\& \right ]=\frac {1}{18} 29^{2/3} \left (x^3\right )^{2/3}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.106 (sec), leaf count = 68
dsolve(diff(y(x),x) = -1/8*(-8*exp(-x^2)+8*x^2*exp(-x^2)-8-8*y(x)^2+8*x^2*exp(-x^2)*y(x)-2*x^4*exp(-x^2)^2-8*y(x)^3+12*x^2*exp(-x^2)*y(x)^2-6*y(x)*x^4*exp(-x^2)^2+x^6*exp(-x^2)^3)*x,y(x))
\[y \left (x \right ) = \frac {\left (58 \RootOf \left (x^{2}-162 \left (\int _{}^{\textit {\_Z}}\frac {1}{841 \textit {\_a}^{3}-27 \textit {\_a} +27}d \textit {\_a} \right )+6 c_{1}\right )+\left (9 x^{2}-6 \,{\mathrm e}^{x^{2}}\right ) {\mathrm e}^{-x^{2}}\right ) {\mathrm e}^{x^{2}} {\mathrm e}^{-x^{2}}}{18}\]