\[ y'(x)=\frac {e^{\frac {y(x)}{x}} \left (x^2 e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}}+x e^{-\frac {y(x)}{x}} y(x)+e^{-\frac {y(x)}{x}} y(x)+x\right )}{x (x+1)} \] ✓ Mathematica : cpu = 0.95621 (sec), leaf count = 23
DSolve[Derivative[1][y][x] == (E^(y[x]/x)*(x + x/E^(y[x]/x) + x^2/E^(y[x]/x) + y[x]/E^(y[x]/x) + (x*y[x])/E^(y[x]/x)))/(x*(1 + x)),y[x],x]
\[\left \{\left \{y(x)\to -x \log \left (-\frac {\log (x+1)-c_1}{x}\right )\right \}\right \}\] ✓ Maple : cpu = 0.283 (sec), leaf count = 20
dsolve(diff(y(x),x) = (exp(-y(x)/x)*y(x)*x+exp(-y(x)/x)*y(x)+exp(-y(x)/x)*x^2+exp(-y(x)/x)*x+x)*exp(y(x)/x)/x/(1+x),y(x))
\[y \left (x \right ) = -\ln \left (\frac {-\ln \left (1+x \right )+c_{1}}{x}\right ) x\]