ODE No. 939

\[ y'(x)=\frac {x^6+6 x^5-12 x^4 y(x)+12 x^4-48 x^3 y(x)+16 x^3+48 x^2 y(x)^2-48 x^2 y(x)+16 x^2+96 x y(x)^2-32 x y(x)-64 y(x)^3-32 x}{16 x^2-64 y(x)+32 x-64} \] Mathematica : cpu = 0.509029 (sec), leaf count = 136

DSolve[Derivative[1][y][x] == (-32*x + 16*x^2 + 16*x^3 + 12*x^4 + 6*x^5 + x^6 - 32*x*y[x] - 48*x^2*y[x] - 48*x^3*y[x] - 12*x^4*y[x] + 96*x*y[x]^2 + 48*x^2*y[x]^2 - 64*y[x]^3)/(-64 + 32*x + 16*x^2 - 64*y[x]),y[x],x]
 

\[\text {Solve}\left [\frac {2}{5} \text {RootSum}\left [\text {$\#$1}^4+4 \text {$\#$1}^3-8 \text {$\#$1}^2 y(x)-16 \text {$\#$1} y(x)-8 \text {$\#$1}+16 y(x)^2+16 y(x)+8\& ,\frac {\text {$\#$1}^2 (-\log (x-\text {$\#$1}))+4 y(x) \log (x-\text {$\#$1})-2 \text {$\#$1} \log (x-\text {$\#$1})+3 \log (x-\text {$\#$1})}{-\text {$\#$1}^2-2 \text {$\#$1}+4 y(x)+2}\& \right ]-\frac {4}{5} \log \left (x^2-4 y(x)+2 x+4\right )+x=c_1,y(x)\right ]\] Maple : cpu = 0.088 (sec), leaf count = 70

dsolve(diff(y(x),x) = (-32*x*y(x)+16*x^3+16*x^2-32*x-64*y(x)^3+48*x^2*y(x)^2+96*x*y(x)^2-12*y(x)*x^4-48*x^3*y(x)-48*x^2*y(x)+x^6+6*x^5+12*x^4)/(-64*y(x)+16*x^2+32*x-64),y(x))
 

\[x -\frac {4 \ln \left (y \left (x \right )-\frac {x^{2}}{4}-\frac {x}{2}-1\right )}{5}+\frac {2 \ln \left (2 \left (y \left (x \right )-\frac {x^{2}}{4}-\frac {x}{2}\right )^{2}+2 y \left (x \right )-\frac {x^{2}}{2}-x +1\right )}{5}-\frac {2 \arctan \left (-2 y \left (x \right )+\frac {x^{2}}{2}+x -1\right )}{5}-c_{1} = 0\]