ODE No. 940

\[ y'(x)=\frac {x^3 \log ^3(x)-3 x^2 y(x) \log ^2(x)-x^2+x^2 \log (x)-y(x)^3-y(x)^2-2 x y(x)+3 x y(x)^2 \log (x)+x y(x) \log (x)}{x (-y(x)-x+x \log (x))} \] Mathematica : cpu = 0.204781 (sec), leaf count = 80

DSolve[Derivative[1][y][x] == (-x^2 + x^2*Log[x] + x^3*Log[x]^3 - 2*x*y[x] + x*Log[x]*y[x] - 3*x^2*Log[x]^2*y[x] - y[x]^2 + 3*x*Log[x]*y[x]^2 - y[x]^3)/(x*(-x + x*Log[x] - y[x])),y[x],x]
 

\[\left \{\left \{y(x)\to -\frac {1}{x \left (-\frac {1}{x^2}-\frac {1}{x^2 \sqrt {-2 x+c_1}}\right )}-x+x \log (x)\right \},\left \{y(x)\to -\frac {1}{x \left (-\frac {1}{x^2}+\frac {1}{x^2 \sqrt {-2 x+c_1}}\right )}-x+x \log (x)\right \}\right \}\] Maple : cpu = 0.067 (sec), leaf count = 63

dsolve(diff(y(x),x) = 1/x*(y(x)*ln(x)*x+x^2*ln(x)-2*x*y(x)-x^2-y(x)^2-y(x)^3+3*x*y(x)^2*ln(x)-3*x^2*ln(x)^2*y(x)+x^3*ln(x)^3)/(-y(x)+x*ln(x)-x),y(x))
 

\[y \left (x \right ) = \frac {x \left (\ln \left (x \right ) \sqrt {c_{1}-2 x}-\ln \left (x \right )+1\right )}{\sqrt {c_{1}-2 x}-1}\]