\[ y'(x)=\frac {-24 x^{7/2} y(x)+\frac {24 x^{13/2}}{5}+14 x^{7/2}+40 x^{3/2}+\frac {8 x^9}{25}-\frac {12}{5} x^6 y(x)+\frac {12 x^6}{5}+24 x^4+6 x^3 y(x)^2-6 x^3 y(x)-6 x^3-60 x y(x)+30 \sqrt {x} y(x)^2-5 \sqrt {x} y(x)-5 y(x)^3+10 x-5 \sqrt {x}}{x \left (2 x^3-5 y(x)+10 \sqrt {x}-5\right )} \] ✓ Mathematica : cpu = 0.307405 (sec), leaf count = 112
DSolve[Derivative[1][y][x] == (-5*Sqrt[x] + 10*x + 40*x^(3/2) - 6*x^3 + 14*x^(7/2) + 24*x^4 + (12*x^6)/5 + (24*x^(13/2))/5 + (8*x^9)/25 - 5*Sqrt[x]*y[x] - 60*x*y[x] - 6*x^3*y[x] - 24*x^(7/2)*y[x] - (12*x^6*y[x])/5 + 30*Sqrt[x]*y[x]^2 + 6*x^3*y[x]^2 - 5*y[x]^3)/(x*(-5 + 10*Sqrt[x] + 2*x^3 - 5*y[x])),y[x],x]
\[\left \{\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}-\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \},\left \{y(x)\to \frac {1}{5} \left (2 x^3+10 \sqrt {x}-5\right )-\frac {1}{125 x \left (-\frac {1}{125 x}+\frac {1}{x \sqrt {-31250 \log (x)+c_1}}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.098 (sec), leaf count = 101
dsolve(diff(y(x),x) = 1/25*(-150*x^3*y(x)+60*x^6+350*x^(7/2)-150*x^3-125*y(x)*x^(1/2)+250*x-125*x^(1/2)-125*y(x)^3+150*x^3*y(x)^2+750*y(x)^2*x^(1/2)-60*y(x)*x^6-600*y(x)*x^(7/2)-1500*x*y(x)+8*x^9+120*x^(13/2)+600*x^4+1000*x^(3/2))/(-5*y(x)+2*x^3+10*x^(1/2)-5)/x,y(x))
\[y \left (x \right ) = \frac {\left (2 x^{3}+10 \sqrt {x}\right ) \sqrt {c_{1}-2 \ln \left (x \right )}-2 x^{3}-10 \sqrt {x}+5}{5 \sqrt {c_{1}-2 \ln \left (x \right )}-5}\]