ODE No. 956

\[ y'(x)=\frac {y(x) \left (y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}+y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log ^2(x) x^{\frac {2}{\log (x)+1}+2}+2 y(x) e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} x^{\frac {2}{\log (x)+1}+2}-e^{\frac {2 \log ^2(x)}{\log (x)+1}} \log (x) x^{\frac {2}{\log (x)+1}+2}-1\right )}{x (\log (x)+1)} \] Mathematica : cpu = 1.17251 (sec), leaf count = 28

DSolve[Derivative[1][y][x] == (y[x]*(-1 - E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x])) - E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x] + E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*y[x] + 2*E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x]*y[x] + E^((2*Log[x]^2)/(1 + Log[x]))*x^(2 + 2/(1 + Log[x]))*Log[x]^2*y[x]))/(x*(1 + Log[x])),y[x],x]
 

\[\left \{\left \{y(x)\to \frac {1}{\left (1+c_1 e^{\frac {x^4}{4}}\right ) (\log (x)+1)}\right \}\right \}\] Maple : cpu = 0.148 (sec), leaf count = 79

dsolve(diff(y(x),x) = 1/(ln(x)+1)*y(x)*(-1-x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2-x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*ln(x)+x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)+2*x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)*ln(x)+x^(2/(ln(x)+1))*exp(2/(ln(x)+1)*ln(x)^2)*x^2*y(x)*ln(x)^2)/x,y(x))
 

\[y \left (x \right ) = \frac {{\mathrm e}^{-\frac {x^{4}}{4}}}{\left (\ln \left (x \right )+1\right ) \left (x^{-\frac {2 \ln \left (x \right )}{\ln \left (x \right )+1}} \left (\ln \left (x \right )+1\right ) {\mathrm e}^{\frac {\left (-4 \ln \left (x \right )-4\right ) \ln \left (\ln \left (x \right )+1\right )-x^{4} \ln \left (x \right )-x^{4}+8 \ln \left (x \right )^{2}}{4 \ln \left (x \right )+4}}+c_{1}\right )}\]