ODE No. 978

\[ y'(x)=\frac {y(x) \left (x^2+x y(x)+y(x)^2+x\right )}{x^2} \] Mathematica : cpu = 0.183538 (sec), leaf count = 60

DSolve[Derivative[1][y][x] == (y[x]*(x + x^2 + x*y[x] + y[x]^2))/x^2,y[x],x]
 

\[\text {Solve}\left [-\frac {1}{2} \log \left (\frac {y(x)^2}{x^2}+\frac {y(x)}{x}+1\right )+\log \left (\frac {y(x)}{x}\right )-\frac {\tan ^{-1}\left (\frac {\frac {2 y(x)}{x}+1}{\sqrt {3}}\right )}{\sqrt {3}}=x+c_1,y(x)\right ]\] Maple : cpu = 0.178 (sec), leaf count = 71

dsolve(diff(y(x),x) = y(x)/x^2*(y(x)^2+x*y(x)+x^2+x),y(x))
 

\[y \left (x \right ) = -\frac {x}{2}+\frac {\sqrt {3}\, x \tan \left (\RootOf \left (-\sqrt {3}\, \ln \left (3\right )-\sqrt {3}\, \ln \left (\frac {4}{3 \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right )}\right )-2 \sqrt {3}\, \ln \left (-\frac {\sqrt {3}}{6}+\frac {\tan \left (\textit {\_Z} \right )}{2}\right )+2 \sqrt {3}\, c_{1}+2 \sqrt {3}\, x +2 \textit {\_Z} \right )\right )}{2}\]