\[ y'(x)=\frac {-x^3+3 x^2 y(x)-3 x y(x)^2+y(x)^3+x}{x} \] ✓ Mathematica : cpu = 0.101009 (sec), leaf count = 37
DSolve[Derivative[1][y][x] == (x - x^3 + 3*x^2*y[x] - 3*x*y[x]^2 + y[x]^3)/x,y[x],x]
\[\left \{\left \{y(x)\to x-\frac {1}{\sqrt {-2 \log (x)+c_1}}\right \},\left \{y(x)\to x+\frac {1}{\sqrt {-2 \log (x)+c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.042 (sec), leaf count = 57
dsolve(diff(y(x),x) = (y(x)^3-3*x*y(x)^2+3*x^2*y(x)-x^3+x)/x,y(x))
\[y \left (x \right ) = \frac {x \sqrt {2 c_{1}-2 \ln \left (x \right )}-1}{\sqrt {2 c_{1}-2 \ln \left (x \right )}}\]