ODE No. 983

\[ y'(x)=\frac {-x^3+3 x^2 y(x)+x^2-3 x y(x)^2+y(x)^3}{(x-1) (x+1)} \] Mathematica : cpu = 0.682168 (sec), leaf count = 238

DSolve[Derivative[1][y][x] == (x^2 - x^3 + 3*x^2*y[x] - 3*x*y[x]^2 + y[x]^3)/((-1 + x)*(1 + x)),y[x],x]
 

\[\text {Solve}\left [\frac {1}{3} \log \left (\frac {\frac {3 y(x)}{x^2-1}-\frac {3 x}{x^2-1}}{3 \sqrt [3]{\frac {1}{(x-1)^3 (x+1)^3}}}+1\right )-\frac {1}{6} \log \left (\frac {\left (\frac {3 y(x)}{x^2-1}-\frac {3 x}{x^2-1}\right )^2}{9 \left (\frac {1}{(x-1)^3 (x+1)^3}\right )^{2/3}}-\frac {\frac {3 y(x)}{x^2-1}-\frac {3 x}{x^2-1}}{3 \sqrt [3]{\frac {1}{(x-1)^3 (x+1)^3}}}+1\right )+\frac {\tan ^{-1}\left (\frac {\frac {2 \left (\frac {3 y(x)}{x^2-1}-\frac {3 x}{x^2-1}\right )}{3 \sqrt [3]{\frac {1}{(x-1)^3 (x+1)^3}}}-1}{\sqrt {3}}\right )}{\sqrt {3}}=\frac {1}{2} \left (\frac {1}{\left (x^2-1\right )^3}\right )^{2/3} \left (x^2-1\right )^2 (\log (1-x)-\log (x+1))+c_1,y(x)\right ]\] Maple : cpu = 0.495 (sec), leaf count = 188

dsolve(diff(y(x),x) = (y(x)^3-3*x*y(x)^2+3*x^2*y(x)-x^3+x^2)/(x-1)/(1+x),y(x))
 

\[y \left (x \right ) = \frac {\left (\frac {\left (x^{2}-1\right ) \left (3 \tan \left (\RootOf \left (9 \left (\frac {1}{\left (x -1\right )^{3} \left (1+x \right )^{3}}\right )^{\frac {2}{3}} \ln \left (\frac {x -1}{1+x}\right ) x^{4}-18 \left (\frac {1}{\left (x -1\right )^{3} \left (1+x \right )^{3}}\right )^{\frac {2}{3}} \ln \left (\frac {x -1}{1+x}\right ) x^{2}+9 \left (\frac {1}{\left (x -1\right )^{3} \left (1+x \right )^{3}}\right )^{\frac {2}{3}} \ln \left (\frac {x -1}{1+x}\right )-6 \textit {\_Z} \sqrt {3}+2 \ln \left (\frac {1}{\left (x -1\right )^{3} \left (1+x \right )^{3}}\right )-3 \ln \left (\frac {4}{3 \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right )}\right )-2 \ln \left (\frac {3 \left (\sqrt {3}+\tan \left (\textit {\_Z} \right )\right )^{3} \sqrt {3}}{8 \left (x -1\right )^{3} \left (1+x \right )^{3}}\right )+18 c_{1}\right )\right )+\sqrt {3}\right ) \left (\frac {1}{\left (x -1\right )^{3} \left (1+x \right )^{3}}\right )^{\frac {1}{3}}}{3}+\frac {2 \sqrt {3}\, x}{3}\right ) \sqrt {3}}{2}\]