\[ y'(x)=\frac {e^{-2 x} (x-1) y(x) \left (x^2 y(x)^2+e^x x y(x)+e^{2 x}\right )}{x} \] ✓ Mathematica : cpu = 9.64187 (sec), leaf count = 428
DSolve[Derivative[1][y][x] == ((-1 + x)*y[x]*(E^(2*x) + E^x*x*y[x] + x^2*y[x]^2))/(E^(2*x)*x),y[x],x]
\[\text {Solve}\left [\frac {\sqrt [3]{2} \left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{2} \sqrt [3]{e^{-3 x} (x-1)^3}}+2^{2/3}\right ) \left (2^{2/3}-\frac {2^{2/3} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right ) \left (\left (1-\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right ) \log \left (2^{2/3}-\frac {2^{2/3} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}\right )+\left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{e^{-3 x} (x-1)^3}}-1\right ) \log \left (2 \left (\frac {3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)}{\sqrt [3]{2} \sqrt [3]{e^{-3 x} (x-1)^3}}+2^{2/3}\right )\right )-3\right )}{9 \left (-\frac {e^{3 x} \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )^3}{(x-1)^3}+\frac {3 \left (3 e^{-2 x} x (x-1) y(x)+e^{-x} (x-1)\right )}{\sqrt [3]{e^{-3 x} (x-1)^3}}-2\right )}=\frac {2^{2/3} e^{-x} (x-1) (x-\log (x))}{9 \sqrt [3]{e^{-3 x} (x-1)^3}}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.296 (sec), leaf count = 40
dsolve(diff(y(x),x) = y(x)/x*(x^2*y(x)^2+y(x)*x*exp(x)+exp(x)^2)/exp(x)^2*(x-1),y(x))
\[y \left (x \right ) = \frac {{\mathrm e}^{\RootOf \left (-{\mathrm e}^{\textit {\_Z}} \ln \left (\frac {x \left ({\mathrm e}^{\textit {\_Z}}+9\right )}{2}\right )+3 c_{1} {\mathrm e}^{\textit {\_Z}}+\textit {\_Z} \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{\textit {\_Z}} x +9\right )+x}}{9 x}\]