ODE No. 985

\[ y'(x)=\frac {(x y(x)+1) \left (x^2 y(x)^2+x^2 y(x)+x^2+2 x y(x)+x+1\right )}{x^5} \] Mathematica : cpu = 0.343964 (sec), leaf count = 103

DSolve[Derivative[1][y][x] == ((1 + x*y[x])*(1 + x + x^2 + 2*x*y[x] + x^2*y[x] + x^2*y[x]^2))/x^5,y[x],x]
 

\[\text {Solve}\left [-\frac {17}{3} \text {RootSum}\left [-17 \text {$\#$1}^3+3 \sqrt [3]{-34} \text {$\#$1}-17\& ,\frac {\log \left (\frac {\frac {x+3}{x^3}+\frac {3 y(x)}{x^2}}{\sqrt [3]{34} \sqrt [3]{-\frac {1}{x^6}}}-\text {$\#$1}\right )}{\sqrt [3]{-34}-17 \text {$\#$1}^2}\& \right ]=-\frac {1}{9} 34^{2/3} \left (-\frac {1}{x^6}\right )^{2/3} x^3+c_1,y(x)\right ]\] Maple : cpu = 0.035 (sec), leaf count = 43

dsolve(diff(y(x),x) = (x*y(x)+1)*(x^2*y(x)^2+x^2*y(x)+2*x*y(x)+1+x+x^2)/x^5,y(x))
 

\[y \left (x \right ) = \frac {17 \RootOf \left (162 \left (\int _{}^{\textit {\_Z}}\frac {1}{289 \textit {\_a}^{3}+54 \textit {\_a} -54}d \textit {\_a} \right ) x +3 c_{1} x +2\right ) x -3 x -9}{9 x}\]