\[ \left \{4 x'(t)+2 x(t)+9 y'(t)+31 y(t)=e^t,3 x'(t)+x(t)+7 y'(t)+24 y(t)=3\right \} \] ✓ Mathematica : cpu = 0.351832 (sec), leaf count = 180
\[\left \{\left \{x(t)\to \frac {1}{442} \left (3 \left (153 e^t-754\right ) \sin (t)+31 \left (17 e^t-78\right ) \cos (t)\right ) (\cos (t)-\sin (t))+\frac {1}{221} \sin (t) \left (\left (493 e^t-2340\right ) \sin (t)+\left (34 e^t-78\right ) \cos (t)\right )-c_2 e^{-4 t} \sin (t)+c_1 e^{-4 t} (\cos (t)-\sin (t)),y(t)\to \frac {1}{221} \sin (t) \left (3 \left (153 e^t-754\right ) \sin (t)+31 \left (17 e^t-78\right ) \cos (t)\right )-\frac {1}{221} (\sin (t)+\cos (t)) \left (\left (493 e^t-2340\right ) \sin (t)+\left (34 e^t-78\right ) \cos (t)\right )+2 c_1 e^{-4 t} \sin (t)+c_2 e^{-4 t} (\sin (t)+\cos (t))\right \}\right \}\] ✓ Maple : cpu = 0.132 (sec), leaf count = 62
\[\left \{\left \{x \left (t \right ) = c_{1} \cos \left (t \right ) {\mathrm e}^{-4 t}+c_{2} {\mathrm e}^{-4 t} \sin \left (t \right )+\frac {31 \,{\mathrm e}^{t}}{26}-\frac {93}{17}, y \left (t \right ) = -\frac {2 \,{\mathrm e}^{t}}{13}+\frac {\left (\left (-221 c_{1}-221 c_{2}\right ) \cos \left (t \right )+221 \left (c_{1}-c_{2}\right ) \sin \left (t \right )\right ) {\mathrm e}^{-4 t}}{221}+\frac {6}{17}\right \}\right \}\]