\[ \left \{4 x'(t)+11 x(t)+9 y'(t)+31 y(t)=e^t,3 x'(t)+8 x(t)+7 y'(t)+24 y(t)=e^{2 t}\right \} \] ✓ Mathematica : cpu = 0.129799 (sec), leaf count = 162
\[\left \{\left \{x(t)\to -e^t t \left (-\frac {4 t}{5}+\frac {1}{36} e^t (30 t+19)-\frac {11}{25}\right )-e^t (t-1) \left (\frac {4 t}{5}-\frac {1}{36} e^t (30 t+49)+\frac {31}{25}\right )-c_1 e^{-4 t} (t-1)-c_2 e^{-4 t} t,y(t)\to e^t (t+1) \left (-\frac {4 t}{5}+\frac {1}{36} e^t (30 t+19)-\frac {11}{25}\right )+e^t t \left (\frac {4 t}{5}-\frac {1}{36} e^t (30 t+49)+\frac {31}{25}\right )+c_1 e^{-4 t} t+c_2 e^{-4 t} (t+1)\right \}\right \}\] ✓ Maple : cpu = 0.102 (sec), leaf count = 65
\[\left \{\left \{x \left (t \right ) = c_{1} t \,{\mathrm e}^{-4 t}+c_{2} {\mathrm e}^{-4 t}+\frac {31 \,{\mathrm e}^{t}}{25}-\frac {49 \,{\mathrm e}^{2 t}}{36}, y \left (t \right ) = -c_{1} t \,{\mathrm e}^{-4 t}-c_{1} {\mathrm e}^{-4 t}-c_{2} {\mathrm e}^{-4 t}-\frac {11 \,{\mathrm e}^{t}}{25}+\frac {19 \,{\mathrm e}^{2 t}}{36}\right \}\right \}\]