2.1906   ODE No. 1906

  1. Problem in Latex
  2. Mathematica input
  3. Maple input

\[ \left \{x'(t)=x(t)+y(t)-z(t),y'(t)=-x(t)+y(t)+z(t),z'(t)=x(t)-y(t)+z(t)\right \} \] Mathematica : cpu = 0.0447676 (sec), leaf count = 278

\[\left \{\left \{x(t)\to \frac {1}{3} c_1 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_2 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_3 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right ),y(t)\to \frac {1}{3} c_2 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_3 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_1 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right ),z(t)\to \frac {1}{3} c_3 e^t \left (2 \cos \left (\sqrt {3} t\right )+1\right )-\frac {1}{3} c_1 e^t \left (-\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )-\frac {1}{3} c_2 e^t \left (\sqrt {3} \sin \left (\sqrt {3} t\right )+\cos \left (\sqrt {3} t\right )-1\right )\right \}\right \}\] Maple : cpu = 0.098 (sec), leaf count = 120

\[\left \{\left \{x \left (t \right ) = \left (c_{2} \sin \left (\sqrt {3}\, t \right )+c_{3} \cos \left (\sqrt {3}\, t \right )+c_{1}\right ) {\mathrm e}^{t}, y \left (t \right ) = c_{1} {\mathrm e}^{t}+\frac {\left (c_{2} \sqrt {3}-c_{3}\right ) \cos \left (\sqrt {3}\, t \right ) {\mathrm e}^{t}}{2}+\frac {\left (-c_{2}-c_{3} \sqrt {3}\right ) {\mathrm e}^{t} \sin \left (\sqrt {3}\, t \right )}{2}, z \left (t \right ) = c_{1} {\mathrm e}^{t}+\frac {\left (-c_{2} \sqrt {3}-c_{3}\right ) \cos \left (\sqrt {3}\, t \right ) {\mathrm e}^{t}}{2}+\frac {\left (-c_{2}+c_{3} \sqrt {3}\right ) {\mathrm e}^{t} \sin \left (\sqrt {3}\, t \right )}{2}\right \}\right \}\]