\[ \left \{x'(t)=-3 x(t)+48 y(t)-28 z(t),y'(t)=-4 x(t)+40 y(t)-22 z(t),z'(t)=-6 x(t)+57 y(t)-31 z(t)\right \} \] ✓ Mathematica : cpu = 0.0111799 (sec), leaf count = 179
\[\left \{\left \{x(t)\to c_1 \left (-e^t\right ) \left (2 e^{2 t}-3\right )+6 c_2 e^t \left (2 e^t+3 e^{2 t}-5\right )-2 c_3 e^t \left (4 e^t+5 e^{2 t}-9\right ),y(t)\to -2 c_1 e^t \left (e^{2 t}-1\right )+c_2 e^t \left (3 e^t+18 e^{2 t}-20\right )-2 c_3 e^t \left (e^t+5 e^{2 t}-6\right ),z(t)\to -3 c_1 e^t \left (e^{2 t}-1\right )+3 c_2 e^t \left (e^t+9 e^{2 t}-10\right )-c_3 e^t \left (2 e^t+15 e^{2 t}-18\right )\right \}\right \}\] ✓ Maple : cpu = 0.094 (sec), leaf count = 66
\[\left \{\left \{x \left (t \right ) = c_{1} {\mathrm e}^{3 t}+c_{2} {\mathrm e}^{2 t}+c_{3} {\mathrm e}^{t}, y \left (t \right ) = c_{1} {\mathrm e}^{3 t}+\frac {c_{2} {\mathrm e}^{2 t}}{4}+\frac {2 c_{3} {\mathrm e}^{t}}{3}, z \left (t \right ) = \frac {3 c_{1} {\mathrm e}^{3 t}}{2}+\frac {c_{2} {\mathrm e}^{2 t}}{4}+c_{3} {\mathrm e}^{t}\right \}\right \}\]