\[ y'(x)^2+e^x \left (y'(x)-y(x)\right )=0 \] ✓ Mathematica : cpu = 2.39279 (sec), leaf count = 190
\[\left \{\text {Solve}\left [\log (y(x))-\frac {-e^{x/2} \sqrt {4 y(x)+e^x}-\frac {4 \sqrt {\frac {e^x}{y(x)}+4} y(x)^{3/2} \sinh ^{-1}\left (\frac {e^{x/2}}{2 \sqrt {y(x)}}\right )}{\sqrt {4 y(x)+e^x}}+e^x}{2 y(x)}=c_1,y(x)\right ],\text {Solve}\left [\log (y(x))-\frac {e^{x/2} \sqrt {4 y(x)+e^x}+\frac {4 \sqrt {\frac {e^x}{y(x)}+4} y(x)^{3/2} \sinh ^{-1}\left (\frac {e^{x/2}}{2 \sqrt {y(x)}}\right )}{\sqrt {4 y(x)+e^x}}+e^x}{2 y(x)}=c_1,y(x)\right ]\right \}\] ✓ Maple : cpu = 0.673 (sec), leaf count = 115
\[\left \{-c_{1}-2 \arctanh \left (\sqrt {4 \,{\mathrm e}^{x} y \left (x \right )+{\mathrm e}^{2 x}}\, {\mathrm e}^{-x}\right )+\ln \left (y \left (x \right )\right )-\frac {{\mathrm e}^{x}}{2 y \left (x \right )}-\frac {\sqrt {4 \,{\mathrm e}^{x} y \left (x \right )+{\mathrm e}^{2 x}}}{2 y \left (x \right )} = 0, -c_{1}+2 \arctanh \left (\sqrt {4 \,{\mathrm e}^{x} y \left (x \right )+{\mathrm e}^{2 x}}\, {\mathrm e}^{-x}\right )+\ln \left (y \left (x \right )\right )-\frac {{\mathrm e}^{x}}{2 y \left (x \right )}+\frac {\sqrt {4 \,{\mathrm e}^{x} y \left (x \right )+{\mathrm e}^{2 x}}}{2 y \left (x \right )} = 0\right \}\]