\[ y'(x)^2-2 y(x) y'(x)-2 x=0 \] ✓ Mathematica : cpu = 0.715414 (sec), leaf count = 61
\[\text {Solve}\left [\left \{x=\frac {K[1] \sinh ^{-1}(K[1])}{2 \sqrt {K[1]^2+1}}+\frac {c_1 K[1]}{\sqrt {K[1]^2+1}},y(x)=\frac {K[1]}{2}-\frac {x}{K[1]}\right \},\{y(x),K[1]\}\right ]\] ✓ Maple : cpu = 0.084 (sec), leaf count = 223
\[\left \{\frac {-2 c_{1} y \left (x \right )+2 c_{1} \sqrt {y \left (x \right )^{2}+2 x}+\sqrt {2 y \left (x \right )^{2}+2 x -2 \sqrt {y \left (x \right )^{2}+2 x}\, y \left (x \right )+1}\, x +\left (\frac {y \left (x \right )}{2}-\frac {\sqrt {y \left (x \right )^{2}+2 x}}{2}\right ) \arcsinh \left (-y \left (x \right )+\sqrt {y \left (x \right )^{2}+2 x}\right )}{\sqrt {2 y \left (x \right )^{2}+2 x -2 \sqrt {y \left (x \right )^{2}+2 x}\, y \left (x \right )+1}} = 0, \frac {2 c_{1} y \left (x \right )+2 c_{1} \sqrt {y \left (x \right )^{2}+2 x}+\sqrt {2 y \left (x \right )^{2}+2 x +2 \sqrt {y \left (x \right )^{2}+2 x}\, y \left (x \right )+1}\, x +\left (-\frac {y \left (x \right )}{2}-\frac {\sqrt {y \left (x \right )^{2}+2 x}}{2}\right ) \arcsinh \left (y \left (x \right )+\sqrt {y \left (x \right )^{2}+2 x}\right )}{\sqrt {2 y \left (x \right )^{2}+2 x +2 \sqrt {y \left (x \right )^{2}+2 x}\, y \left (x \right )+1}} = 0\right \}\]