\[ x^3+x y'(x)^2+y(x) y'(x)=0 \] ✓ Mathematica : cpu = 0.151708 (sec), leaf count = 107
\[\left \{\left \{y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{5 K[2]+\sqrt {K[2]^2-4}}dK[2]\& \right ]\left [\int _1^x-\frac {1}{2 K[3]}dK[3]+c_1\right ]\right \},\left \{y(x)\to x^2 \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{\sqrt {K[4]^2-4}-5 K[4]}dK[4]\& \right ]\left [\int _1^x\frac {1}{2 K[5]}dK[5]+c_1\right ]\right \}\right \}\] ✓ Maple : cpu = 0.19 (sec), leaf count = 269
\[\left \{c_{1}+\int _{\textit {\_b}}^{x}\frac {-y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\left (5 y \left (x \right )+\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}\right ) \textit {\_a}}d \textit {\_a} +\int _{}^{y \left (x \right )}\frac {\left (80 \textit {\_f} +16 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )-2}{5 \textit {\_f} +\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} = 0, c_{1}+\int _{\textit {\_b}}^{x}\frac {-y \left (x \right )+\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}}{\left (5 y \left (x \right )-\sqrt {-4 \textit {\_a}^{4}+y \left (x \right )^{2}}\right ) \textit {\_a}}d \textit {\_a} +\int _{}^{y \left (x \right )}\frac {\left (-80 \textit {\_f} +16 \sqrt {-4 x^{4}+\textit {\_f}^{2}}\right ) \left (\int _{\textit {\_b}}^{x}\frac {\textit {\_a}^{3}}{\left (-5 \textit {\_f} +\sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}\right )^{2} \sqrt {-4 \textit {\_a}^{4}+\textit {\_f}^{2}}}d \textit {\_a} \right )-2}{5 \textit {\_f} -\sqrt {-4 x^{4}+\textit {\_f}^{2}}}d \textit {\_f} = 0\right \}\]