\[ y(x) y'(x)+x y'(x)^2-y(x)^4=0 \] ✓ Mathematica : cpu = 0.343127 (sec), leaf count = 25
\[\left \{\left \{y(x)\to \frac {2 e^{\frac {c_1}{2}}}{-4 x+e^{c_1}}\right \}\right \}\] ✓ Maple : cpu = 0.237 (sec), leaf count = 95
\[\left \{y \left (x \right ) = -\frac {1}{2 \sqrt {-x}}, y \left (x \right ) = \frac {1}{2 \sqrt {-x}}, y \left (x \right ) = -\frac {\sqrt {-x \left (\tanh ^{2}\left (\frac {c_{1}}{2}-\frac {\ln \left (x \right )}{2}\right )\right )+x}}{2 x \tanh \left (\frac {c_{1}}{2}-\frac {\ln \left (x \right )}{2}\right )}, y \left (x \right ) = \frac {\sqrt {-x \left (\tanh ^{2}\left (\frac {c_{1}}{2}-\frac {\ln \left (x \right )}{2}\right )\right )+x}}{2 x \tanh \left (\frac {c_{1}}{2}-\frac {\ln \left (x \right )}{2}\right )}\right \}\]