\[ y'(x)=\frac {e^{2 F((y(x)-x) (y(x)+x))}+x^2+2 x y(x)+y(x)^2}{-e^{2 F((y(x)-x) (y(x)+x))}+x^2+2 x y(x)+y(x)^2} \] ✓ Mathematica : cpu = 0.936624 (sec), leaf count = 205
\[\text {Solve}\left [\int _1^{y(x)}\left (-\frac {2 K[2]}{-x^2+e^{2 F((K[2]-x) (x+K[2]))}+K[2]^2}-\int _1^x\left (\frac {2 K[1] \left (-4 e^{2 F((K[2]-K[1]) (K[1]+K[2]))} F'((K[2]-K[1]) (K[1]+K[2])) K[2]-2 K[2]\right )}{\left (K[1]^2-e^{2 F((K[2]-K[1]) (K[1]+K[2]))}-K[2]^2\right )^2}-\frac {1}{(K[1]+K[2])^2}\right )dK[1]+\frac {1}{x+K[2]}\right )dK[2]+\int _1^x\left (\frac {1}{K[1]+y(x)}-\frac {2 K[1]}{K[1]^2-e^{2 F((y(x)-K[1]) (K[1]+y(x)))}-y(x)^2}\right )dK[1]=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.227 (sec), leaf count = 37
\[\left \{y \left (x \right ) = -x +{\mathrm e}^{\RootOf \left (c_{1}-\textit {\_Z} +\int _{}^{-2 x \,{\mathrm e}^{\textit {\_Z}}+{\mathrm e}^{2 \textit {\_Z}}}\frac {1}{\textit {\_a} +{\mathrm e}^{2 F \left (\textit {\_a} \right )}}d \textit {\_a} \right )}\right \}\]