\[ y'(x)=\frac {1}{y(x)+\sqrt {x}} \] ✓ Mathematica : cpu = 0.0742469 (sec), leaf count = 445
\[\left \{\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,1\right ]}\right \},\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,2\right ]}\right \},\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,3\right ]}\right \},\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,4\right ]}\right \},\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,5\right ]}\right \},\left \{y(x)\to -\sqrt {x}+\frac {1}{\text {Root}\left [\text {$\#$1}^6 \left (16 x^3+16 e^{12 c_1}\right )-24 \text {$\#$1}^4 x^2+8 \text {$\#$1}^3 x^{3/2}+9 \text {$\#$1}^2 x-6 \text {$\#$1} \sqrt {x}+1\& ,6\right ]}\right \}\right \}\] ✓ Maple : cpu = 0.244 (sec), leaf count = 59
\[\left \{y \left (x \right ) = \frac {\sqrt {x}\, \RootOf \left (c_{1} \textit {\_Z}^{18}-9 \textit {\_Z}^{6} x -6 \textit {\_Z}^{3} \sqrt {x}-1\right )^{3}+1}{\RootOf \left (c_{1} \textit {\_Z}^{18}-9 \textit {\_Z}^{6} x -6 \textit {\_Z}^{3} \sqrt {x}-1\right )^{3}}\right \}\]