\[ y'(x)=\frac {e^{-x^2} x}{e^{x^2} y(x)+1} \] ✓ Mathematica : cpu = 11.4054 (sec), leaf count = 59
\[\text {Solve}\left [-\frac {1}{4} \log \left (2 e^{2 x^2} y(x)^2+2 e^{x^2} y(x)+1\right )-\frac {1}{2} \tan ^{-1}\left (2 e^{x^2} y(x)+1\right )+\frac {x^2}{2}=c_1,y(x)\right ]\] ✓ Maple : cpu = 0.197 (sec), leaf count = 84
\[\left \{y \left (x \right ) = -\frac {{\mathrm e}^{-x^{2}} \tan \left (\RootOf \left (2 x^{2}+6 c_{1}-2 \textit {\_Z} -\ln \left (\frac {81 \left (\tan ^{2}\left (\textit {\_Z} \right )\right )}{10}+\frac {81}{10}\right )+2 \ln \left (\frac {9 \tan \left (\textit {\_Z} \right )}{2}-\frac {9}{2}\right )\right )\right )}{\tan \left (\RootOf \left (2 x^{2}+6 c_{1}-2 \textit {\_Z} -\ln \left (\frac {81 \left (\tan ^{2}\left (\textit {\_Z} \right )\right )}{10}+\frac {81}{10}\right )+2 \ln \left (\frac {9 \tan \left (\textit {\_Z} \right )}{2}-\frac {9}{2}\right )\right )\right )-1}\right \}\]