\[ y'(x)=y(x) (\log (\log (y(x)))-\log (x)) \] ✓ Mathematica : cpu = 0.146057 (sec), leaf count = 41
\[\text {Solve}\left [\int _1^{y(x)}\frac {1}{K[1] (x \log (x)+\log (K[1])-x \log (\log (K[1])))}dK[1]=-\log (x)+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.196 (sec), leaf count = 35
\[\left \{-c_{1}+\int _{\textit {\_b}}^{y \left (x \right )}\frac {1}{\left (x \ln \left (x \right )-x \ln \left (\ln \left (\textit {\_a} \right )\right )+\ln \left (\textit {\_a} \right )\right ) \textit {\_a}}d \textit {\_a} +\ln \left (x \right ) = 0\right \}\]