\[ y'(x)=\frac {x^4+x^4 \log (x)-2 x^2 y(x)-2 x^2 y(x) \log (x)+y(x)^2+y(x)^2 \log (x)+2 e^x x-2 x-\log (x)-1}{e^x-1} \] ✓ Mathematica : cpu = 2.112 (sec), leaf count = 88
\[\left \{\left \{y(x)\to \frac {\exp \left (\int _1^x\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right )}{-\int _1^x\frac {\exp \left (\int _1^{K[6]}\frac {2 (\log (K[5])+1)}{-1+e^{K[5]}}dK[5]\right ) (\log (K[6])+1)}{-1+e^{K[6]}}dK[6]+c_1}+x^2+1\right \}\right \}\] ✓ Maple : cpu = 8.82 (sec), leaf count = 71
\[\left \{y \left (x \right ) = \frac {c_{1} x^{2}-x^{2} {\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}+c_{1}+{\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}}{c_{1}-{\mathrm e}^{\int \frac {2 \ln \left (x \right )+2}{{\mathrm e}^{x}-1}d x}}\right \}\]