\[ y'(x)=\frac {-x^3+x^3 (-\log (x))-x y(x)^2+x y(x)-e^x y(x)-x y(x)^2 \log (x)}{x \left (x-e^x\right )} \] ✓ Mathematica : cpu = 2.86037 (sec), leaf count = 37
\[\left \{\left \{y(x)\to x \tan \left (\int _1^x\frac {K[1] (\log (K[1])+1)}{e^{K[1]}-K[1]}dK[1]+c_1\right )\right \}\right \}\] ✓ Maple : cpu = 0.097 (sec), leaf count = 35
\[\left \{y \left (x \right ) = x \tan \left (c_{1}+\int \frac {x}{-x +{\mathrm e}^{x}}d x +\int \frac {x \ln \left (x \right )}{-x +{\mathrm e}^{x}}d x \right )\right \}\]