\[ y'(x)=e^{-x^2} x \left (e^{3 x^2} y(x)^3+e^{2 x^2} y(x)^2+1\right ) \] ✓ Mathematica : cpu = 0.383342 (sec), leaf count = 127
\[\text {Solve}\left [\frac {11}{3} \text {RootSum}\left [11 \text {$\#$1}^3+15 \sqrt [3]{11} \text {$\#$1}+11\& ,\frac {\log \left (\frac {3 e^{2 x^2} x y(x)+e^{x^2} x}{\sqrt [3]{11} \sqrt [3]{e^{3 x^2} x^3}}-\text {$\#$1}\right )}{11 \text {$\#$1}^2+5 \sqrt [3]{11}}\& \right ]=\frac {11^{2/3} e^{x^2} x^3}{18 \sqrt [3]{e^{3 x^2} x^3}}+c_1,y(x)\right ]\] ✓ Maple : cpu = 0.069 (sec), leaf count = 44
\[\left \{y \left (x \right ) = \frac {\left (-11 \RootOf \left (-5 x^{2}+6 c_{1}+20250 \left (\int _{}^{\textit {\_Z}}\frac {1}{121 \textit {\_a}^{3}+3375 \textit {\_a} -3375}d \textit {\_a} \right )\right )-15\right ) {\mathrm e}^{-x^{2}}}{45}\right \}\]