\[ y'(x)=\frac {e^{-x} y(x) \left (x^2 y(x) \log (2 x)-e^x-x \log (2 x)\right )}{x} \] ✓ Mathematica : cpu = 0.500507 (sec), leaf count = 49
\[\left \{\left \{y(x)\to \frac {2^{e^{-x}} x^{e^{-x}-1}}{2^{e^{-x}} x^{e^{-x}}+c_1 e^{\text {Ei}(-x)}}\right \}\right \}\] ✓ Maple : cpu = 0.147 (sec), leaf count = 34
\[\left \{y \left (x \right ) = \frac {1}{c_{1} 2^{-{\mathrm e}^{-x}} x^{-{\mathrm e}^{-x}+1} {\mathrm e}^{-\Ei \left (1, x\right )}+x}\right \}\]