\[ y'(x)=-\frac {i \left (x^4+8 x^2 y(x)^2+16 y(x)^4+8 i x\right )}{32 y(x)} \] ✓ Mathematica : cpu = 0.107878 (sec), leaf count = 406
\[\left \{\left \{y(x)\to -\frac {\sqrt {2} \sqrt {\left (\text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right ) \left (-\frac {1}{2} x^2 \left (\text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right )+\left (1+i \sqrt {3}\right ) \text {Bi}'\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+\left (1+i \sqrt {3}\right ) c_1 \text {Ai}'\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right )}}{2 \text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+2 c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )}\right \},\left \{y(x)\to \frac {\sqrt {2} \sqrt {\left (\text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right ) \left (-\frac {1}{2} x^2 \left (\text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right )+\left (1+i \sqrt {3}\right ) \text {Bi}'\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+\left (1+i \sqrt {3}\right ) c_1 \text {Ai}'\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )\right )}}{2 \text {Bi}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )+2 c_1 \text {Ai}\left (\frac {1}{2} \left (i-\sqrt {3}\right ) x\right )}\right \}\right \}\] ✓ Maple : cpu = 0.521 (sec), leaf count = 296
\[\left \{y \left (x \right ) = \frac {\sqrt {2}\, \sqrt {\left (c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+\AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right ) \left (c_{1} \left (1+i \sqrt {3}\right ) \AiryAi \left (1, \frac {\left (i-\sqrt {3}\right ) x}{2}\right )-\frac {\left (c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+\AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right ) x^{2}}{2}+\left (1+i \sqrt {3}\right ) \AiryBi \left (1, \frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right )}}{2 c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+2 \AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )}, y \left (x \right ) = -\frac {\sqrt {2}\, \sqrt {\left (c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+\AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right ) \left (c_{1} \left (1+i \sqrt {3}\right ) \AiryAi \left (1, \frac {\left (i-\sqrt {3}\right ) x}{2}\right )-\frac {\left (c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+\AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right ) x^{2}}{2}+\left (1+i \sqrt {3}\right ) \AiryBi \left (1, \frac {\left (i-\sqrt {3}\right ) x}{2}\right )\right )}}{2 c_{1} \AiryAi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )+2 \AiryBi \left (\frac {\left (i-\sqrt {3}\right ) x}{2}\right )}\right \}\]