\[ y'(x)=\frac {x}{x^4+2 x^2 y(x)^2+y(x)^4-y(x)} \] ✓ Mathematica : cpu = 0.175062 (sec), leaf count = 510
\[\left \{\left \{y(x)\to \frac {\sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{6 \sqrt [3]{2}}-\frac {12 x^2-4 c_1{}^2}{3\ 2^{2/3} \sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}+\frac {c_1}{3}\right \},\left \{y(x)\to -\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{12 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) \left (12 x^2-4 c_1{}^2\right )}{6\ 2^{2/3} \sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}+\frac {c_1}{3}\right \},\left \{y(x)\to -\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}{12 \sqrt [3]{2}}+\frac {\left (1-i \sqrt {3}\right ) \left (12 x^2-4 c_1{}^2\right )}{6\ 2^{2/3} \sqrt [3]{144 c_1 x^2+\sqrt {4 \left (12 x^2-4 c_1{}^2\right ){}^3+\left (144 c_1 x^2-108+16 c_1{}^3\right ){}^2}-108+16 c_1{}^3}}+\frac {c_1}{3}\right \}\right \}\] ✓ Maple : cpu = 0.18 (sec), leaf count = 621
\[\left \{y \left (x \right ) = -\frac {c_{1}^{2}-12 x^{2}+2 c_{1} \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {1}{3}}+\left (-i c_{1}^{2}+12 i x^{2}+i \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {2}{3}}\right ) \sqrt {3}+\left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {2}{3}}}{12 \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {1}{3}}}, y \left (x \right ) = \frac {-c_{1}^{2}+12 x^{2}-2 c_{1} \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {1}{3}}+\left (-i c_{1}^{2}+12 i x^{2}+i \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {2}{3}}\right ) \sqrt {3}-\left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {2}{3}}}{12 \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {24 c_{1}^{2} x^{4}+48 x^{6}+3 c_{1}^{3}+\left (3 c_{1}^{4}+108 c_{1}\right ) x^{2}+81}\right )^{\frac {1}{3}}}, y \left (x \right ) = -\frac {c_{1}}{6}+\frac {\left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+3 x^{2} c_{1}^{4}+108 c_{1} x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}}{6}+\frac {-12 x^{2}+c_{1}^{2}}{6 \left (-c_{1}^{3}-36 c_{1} x^{2}-54+6 \sqrt {48 x^{6}+24 c_{1}^{2} x^{4}+3 x^{2} c_{1}^{4}+108 c_{1} x^{2}+3 c_{1}^{3}+81}\right )^{\frac {1}{3}}}\right \}\]