\[ y'(x)=\frac {2 x^2 y(x) \log ^2(x)+x^2 y(x)^2 \log (x)+x^2 \log ^3(x)+y(x)}{x \log (x)} \] ✓ Mathematica : cpu = 0.265561 (sec), leaf count = 186
\[\left \{\left \{y(x)\to -\frac {\frac {1}{4} x^2 e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1) \left (\frac {x}{2}+\frac {1}{2} x (2 \log (x)-1)\right )+\frac {1}{2} x e^{\frac {1}{4} x^2 (2 \log (x)-1)}+\frac {1}{2} x e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1)+c_1 e^{\frac {1}{4} x^2 (2 \log (x)-1)} \left (\frac {x}{2}+\frac {1}{2} x (2 \log (x)-1)\right )}{x \left (\frac {1}{4} x^2 e^{\frac {1}{4} x^2 (2 \log (x)-1)} (2 \log (x)-1)+c_1 e^{\frac {1}{4} x^2 (2 \log (x)-1)}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.033 (sec), leaf count = 43
\[\left \{y \left (x \right ) = -\frac {\left (2 x^{2} \ln \left (x \right )-x^{2}+2 c_{1}+4\right ) \ln \left (x \right )}{2 x^{2} \ln \left (x \right )-x^{2}+2 c_{1}}\right \}\]