\[ y'(x)=\frac {2 x^3 y(x) \log ^2(x)+x^3 y(x)^2 \log (x)+x^3 \log ^3(x)+y(x)}{x \log (x)} \] ✓ Mathematica : cpu = 0.23954 (sec), leaf count = 198
\[\left \{\left \{y(x)\to -\frac {\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1) \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)}+\frac {1}{3} x^2 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)+c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)} \left (\frac {x^2}{3}+\frac {1}{3} x^2 (3 \log (x)-1)\right )}{x^2 \left (\frac {1}{9} x^3 e^{\frac {1}{9} x^3 (3 \log (x)-1)} (3 \log (x)-1)+c_1 e^{\frac {1}{9} x^3 (3 \log (x)-1)}\right )}\right \}\right \}\] ✓ Maple : cpu = 0.03 (sec), leaf count = 43
\[\left \{y \left (x \right ) = -\frac {\left (6 x^{3} \ln \left (x \right )-2 x^{3}+9 c_{1}+18\right ) \ln \left (x \right )}{6 x^{3} \ln \left (x \right )-2 x^{3}+9 c_{1}}\right \}\]